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ABSTRACT

Some scientific inference tasks (including ..ass spectrum iHentiflcation
(Dendral], medical diagnosis [Mycnj, and math theory development
[AM]) have been successfully modelled as rule-directed search
processes. These rule systems are designed quite differently from
pure production systems. By concentrating upon the design of one

program (AM), we shall show how 13 kinds of design deviations arise
from () the level of sophistication of the task that the system is
designed to perform, (t) the inherent nature of the task, and 46a) the
designer's view of the task. The limitations of AM suggest even more
radical departures from traditional ru!e system architecture. All these
modifications are then collected into a new, complicated set of
constraints on the form of the data structures, the rules, the
interpreter, and the distribution of knowledge between rules and data
structures. These new policies sacrifice uniformity in the interests of
clarity, efficiency and power deuivable from a thorough
characterization of the task. Rule systems whose architectures
conform to the new design principles will be more awkward for many
tasks than would "pure* systems. Nevertheless, the new architecture
should be significantly more powerful and natural for building rule
systems that do scientific discovery tasks.
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1. The Basic Argument

Although rule-based computation was Jriginally used for formal and systems purposes
(Po-.t,MarkovoFloyd] researchers in Artificial Intelligence (AI) found that the same
mornthodology was also useful for modelling a wide variety of sophisticated tasks. Many

of these early Al rule-based programs -- called "production systems" -- served as
information processing models of humans performing cognitive tasks in several domains
(igit recall [191, algebra word problem solving [1] poker playing [23], etc. [16,18]).

There were many design constraints present in the classical formal rule based systems.
Many of these details were preserved in the Al prodtic on rule based programs (e.g.,
forcing all state information into a single string of tokens). [Jut there were many
r hange-,. The whole notion of "what a rule system really i%" changed from an effective
problem statement to a tendency to solve problems in a particular way. One typical
cot ollary of this change of view was that instead of no external inputs whatsoever,
there was now a presumption of some 'envirOnmi'nt" vhich supplied new entries into
the token sequence. In the next section (see Figure 1) is an articulation of these neo-

classical (i.e., Al circa 1973; see [7)) principles for designing "'pure" production
*. yst ems.

)ue to the early successes, psychological applicability, and aesthetic simplicity
afforded by proouction systems, Al researchers beran to write rule systems (RSs) to
perform informal inductive inference tasks (mass ,.pectrum identification (4] medical

dia.nosm (23] and consultation dialogue (6] speech understanding [14], non-resolution
theorem proving (0], math research [13], and many more)

Yet it -.eems that most of the large, succeessful RSs have violated many of the "pure
production system" guidelines. The purpose of this paper is to show that such
.. '.wceptions" were inevitable, because any system satisfying the neo-classical design
constraints, though universal in principle, is too impoverished to represent complex
tasks for what they are.

The essence of the nee-classical architecture is to opt for simplicity in all things, since
there is very little one can say about RSs in general. As more becomes known about
the task of the RS, it turns out that some of that new knowledge takes the form of
.pecific constraints on the design of the RS itself (as distinct from what specific
knowledge we choose to represent within that design). Sometimes a new constraint
directly contradicts the early, domain-independent one; sometimes it is merely a
softening or augmentation of the old constraint.

After examining the "pure" architecture, we shall examine in detail the design of one
particular rule system which discovers and studies mathematical concepts. Deviations
from the pure architecture will be both frequent and extreme.

Subsequent sections will analyze these differences. It will be shown that each one is
plausible -- usual!y for reasons which depend strongly on the "scientific discovery"
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domain 'of the RS. Some of the limitations of this RS will be treated, and their
eimination will be seen to require abandoning still more of the original design
constraints.

When these modifications are collected, in the final section, we shall have quite a
different set of principles for building RSs. Not only will naivete have been lost: so
will generality (the breadth of kinds of knowledge representable, the totality of
tractable tasks). Rule systems conforming to the new design will be awkward for many
tasks (just as a sledge hammer is awkward for cracking eggs). However, they should
be significantly more powerful and natural for scientific inference tasks.

2. Early Design Constraints

By a rule system (RS) we shall mean any collection of condition-action rules, together
with associated data structures (DS; also called memories) which the rules may inspect
and alter. There must also be a policy for interpretation: detecting and firing relevant
rules.

These definitions are deliberately left vague. Many details must be specified for any
actual rule system (e.g.. What may appear in the condition part of a rule?). This
specification process is what we mean by designig a RS.

Figure I contains an articulation of the design of the early general-purpose Al
production rule systems. Notice the common theme: the adequacy of simplicity in all
dimensions.

FlIGJRE I: Neo-classical qule System Architecture

1. Princeple of Simple Memries. One or two uniform data structures dqfine
suffictent memories for a rule system to read from and write into. The
forwat for entrses in these structures is both uncomplicated and unchanging.

2. Principle of Simple DS Accesses. The primuuve read and write operations are
as simple and Low-level as possible; typicaUy they are simply a membership-
test type of read. and an insert-new-element type of write. More
complicated, algorithmic operations on the memories are not available to the
rules.

3. Principle of Isolated DS Elements. Elements of the uniform DS cannot point
to (parts of) other elements. This follows from the preceding principle: if we
aren't allowed to chase pointers, there may as well not be any.

4. Princiwle of Continuous Attention. In addition to the one or two simple data
structures, there may be an external environment which continuously inserts
stimuli into the DS. The interleaving of stimuli and internally generated
symbols is managed quite triwialiy? (a) The stimuli are simply inserted into
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the DS as new elements: fb) Each rule is in small and quick that no
"interruption" mechanism is necessary. The interpreter may ignore any
suddenly-added stimuhs unttl the current rule finishes erecuting. The RS
may be viewed as "continuously' attending to the environment.

5. Principle of Opaque Riles. Rules need not have a format inspectable by
other rules, but rather can be coded in whatever way is convenient for the
programmer and the rule interpreter; i.e.. the set of rules as not treated as
one of the RSs data structures. E.g.. the condition parts of rules may be
barred from fully antalyzng the set of production! 1221. and the action parts
of rules may not be allowed to delete etsiting rules 124.

6. Principle of Sim ple Rules. Rules consist of a left- and a right-hand sidc
which are quite elemnentary The left hand sade (lhs. situation
characteritation. if-part. condition) is typicnily a pattern-match composed
wath a primitive DS read access, and the rigqht hand side (rhs. consequence.
TtLEN-part. action) is also simply a primttive DS write access. There as no
need for sophisticated bundles of DS accessrs on either side of a ride. Thus
several ertra rules should be preferred to a steigle rile with several actions.

1. Princle of Encoding by Coupled Rules. A collection of interrelated rulcs is
uscd to accomplish each sabtask; i.e.. wherever a subroutine would be used an
a procedUral programming language. ror eranaple, progromming an
itcratinn may require many rides "couipled" by writing and reading special
(i.e., otherwise meaningless) loop control notes in the data structure.

8. Principle of Knowledge as Rules. All knowledge of substance should be.. can
* be. and is represented as rules. This includes all non-trivial domain-

dependent &nformation. The role of the DS is just to hold simple descrtptive
information, intermediate control state messages. recent stimuli from the
environment. etc.

9. Principle of Stmple Interpretatton. The topmost control flow in the RS is via
a simple rule interpreter. After a ride fires. at is essential that any rule in
the system may potentially be the nert one to fire (i.e.. it is forbidden to
locate a set of relevant rules and fire them off in sequence). When the rhs of
a rule is erecuted. it can (and frequently wall) drastically alter the situation
that determined w1ch rules were relevant.

10. Prtnciple of Closure. The representations allowed by (1-9) are sufficient and
appropriate for organizing all the kinds of knowledge needed for tasks for
which a given RS as designed.

This design was plausible a priori, and worked quite well for its initial applications (the
simulation of simple human cognitive processes (16,19,24]). But is this design proper
for any RS, regardless of its intended task' In particular, what about scientific
inference tasks? Over the years, several rule-based inference systems for scientific
tasks have been constructed. With each new success have come some deviations from
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the above principles (71 Were these mere aberrations, or is there some valid reason
for such changes in design?

We claim the latter. The task domain -- scientific discovery -- dictates a new and
quite different architecture for RSs. To study this phenomenon, we shall describe, in
the newt section, one particular RS which defines new mathematical concepts, studies
them, and conjectures relationships between them. Subsequent sections will explore
the deviations of its design from the neo-classical constraints in Figure 1.

3. 'AM': A Rule System For Math Theory Formation

A recent thesis (13] describes a program, called "AM", which gradually expands a base
of mathematical knowledpe. The representation of math facts is somewhat related to
Actors (101 and Beings [12] in the partitioning of such domain knowledge into
rffective, structured modules. Drparting from the traditional control structures usually
a'. ociated with Actors, Beings, and Frames (15], AM concentrates on one "interesting"
mini-research question after another. These "jobs" are proposed by -- and rated by --
a collection of approximately 250 situation-action rules. Discovery in mathematics is
modelled in AM as a rule-guided exploration process. This view is explained below in
Section 3.1 (See also [213) The representation of knowledge is sketched next, followed
by a much more detailed description of the rule-based control structure of AM.
Finally, in Section 3.5, the experimental results of the project are summarized.

3.1. Discovery in Mathematics as Heuristic Rule-Guided Search

The task which AM performs is the discovery of new mathematics concepts and
relation-.hips between them. The simple paradigm it follows for this task is to maintain
a graph of partially-developed concepts , and to obey a large collection of "heuristics"
(riles which frequently lead to discoveries) which guide it to define and study the
most plausible thing next.

For ewample, at one point AM had some notions of sets, set-operations, numberf., and
,.imple arithmetic. One heuristic rule it knew said "If f is an interesting relation. Then
look at its inverse" This rule fired after AM had studied "multiplication" for a while.
The rhs of the rule then directed AM to define and study the relation "divisors-of"
(e.g., divisors-of(12) - {1,2,3,4,6,121). Another heuristic rule which later fired said "If
f is a relation from A into B, then it's worth eramining those members of A which map
into ertremal members of 8". In this case, f was matched to "divisors-of", A was
.numbers", B was "sets of numbers', and an extremal member of B might be, e.g., a
very small set of numbers. Thus this heuristic rule caused AM to define the set of
numbers with no divisors, the set of numbers with only I divisor, with only 2 divisors,
etc. One of these sets (the last one mentioned) turned out subsequently to be quite
important; these numbers are of course the primes. The above heuristic also directed
AM to study numbers with very many divisors; such highly-composite numbers were
also found to be interesting.
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hi-. !-ame paradigm enabled AM to discover concepts which were much more primitive
(evg., cardinality) and much more sophisticated (e.g., the fundamental theorem of
arithmetic) than prime numbers. We shall now describe the AM program in more detail.

3.2. Representation of Mathematical Knowledge

What exactly does it mean for AM to "have the notion of" a concept? It means that AM
por,'-ef--es a frame-like data structure for that concept. For ins~tance, here is how one
concept looked after AM had defined and explored it:

FIGURE 2: A Tipical Concept

NAME: Prime Numbers
DEFINITIONS;

ORIGIN: Number -of -di'ror!, -01(y) -2
PRFO!CATE-CALCIJIUS: Prime(v) v (Yz)(ift - z-1 XOR z-x)
ITERATIVF- (for v--1): For i from 2 to wi-1, -610w

FXAMPLES: 2, '1, 5., 7. 11, 13, 17
BOUNJDARY: 2, 3
BOUNJDARY FAILUJRES: 0. 1
FAILURES: 12

GENFIPALIZATIONS: Numbers, Nuimbers -with an~ e en number of divisors,
r~imbcrs with a prime nurnlwr of divtsor .

31"FCI iALIZAT IONS: Odd Primes, Prime Pairs, Prime Un'eqiily-addlables
CONJlFCS: Unique factori~ation, Goldbach% conlr'ctitre, Extrema of Divisore.-of
ANALOGIES:

Maimalli-divitible numbers are converse extremes of Divisors-of
INTFREST: Conjectures tyir.g Primes to Times, to Divi';ors-of, to closely related ops
WORTH: 800

3.3. Top-level Control: An Agenda of Promising Questions

AM war, initiAlly given a collection of 115 core concepts, with only a few facets (i.e.,
,lots) filled in for each. AM repeatedly chooses some, facet of some concept, and tries,
t6 fill in some entries for that particular slot. To decide which such job to work on
niext. AM maintains an agenda of jobs. a global queue ordered by priority [21 A
typical job is "F&U-in eram pies of Primes". The agenda may contain hundreds of
entries such as this one. AM repeatedly selects the top job from the agenda and tries
to carry it out. This is the whole control structure! Of course, we must still explain
how AM creates plausible new jobs to place on the agenda, how AM decidles which job
will be the best one to execute next, and how it carries out a job.

If the job were 'rin n ew Atgorithms for Scr-unoon", then satisfying it would mean
actually synthesizing some new procedures, sorne new LISP code capable of forming
the union of any two sets. A heuristic rule is relevant to a job if and only if executing
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that rule brings AM closer to satisfying that job. Potential relevance is determined a
priori by where the rule is sltoed. A rule tacked onto the Domain/range facet of the
Compose concept would be presumed potentially relevant to the job "FilU in the
Donain of Insert-o-Delere". The Ihs of each potentially relevant rule is evaluated to
determine whether the ruile is truly relevant.

Once a job is chosen from the agenda, AM gathers together all the potentially relevant
heuristic rules -- the ones which might accomplish that job. They are executed, and
then AM picks a new job. While a rule is executing, three kinds of actions or effects

(an occur:

(I) Facets of some concepts can get filled in (e.g., examples of primes may actually be
found and tacked onto the "Examples" facet of the "Primes" concept). A typical
heuristic rule which might nave this effect is:

If examples of X are deisred. where X is a kind of V (for some more general
concept V).

Then check the eramples of V; some of them may be eramples of X as welL

For the job of filling in examples of Primes, this rule would have AM notice that

Primes is a kind of Number, and therefore look over all the known examples of
Number. Some of those would be primes, and would be transferred to the

Examples facet of Primes.

(it! New concepts may be created (e.g., the concept "primes which are uniquely
representable as the sum of two other primes" may be somehow be deemed
worth studying). A typical heuristic rule which might result in this new concept
is:

If some (but not most) examples of X are also eramples of V (for some

concept Y).
Then create a new concept defined as the intersecton of those 2 concepts (X

and Y).

Suppose AM has already isolated the concept of being representable as the sum
of two primes in only one way (AM actually calls such numbers "Uniquely-prime-
addable numbers"). When AM notices that some primes are in this set, the above

rule will create a brand new concept, defined as the set of numbers which are

both prime and uniquely prime addable.

(i) New jobs may be added to the agenda (e.g., the current activity may suggest that
the following job is worth considering: "Generalize the concept of prime
numbers"). A typical heuristic rule which might have this effect is:

if very few examples of X are found.
Then add the foUowing job to the agenda: "Generalize the concept X",

The concept of an agenda is certainly not new: schedulers have been around for a long
time. But one important feature of AM's agenda scheme is a new Idea: attaching -- and
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uing -- a ;st of quasi-symbolic reasons to each job which explain why the job is
worth considering, why it's plausible. It is the responsibility of the heuristic rules to
include reasons for aiy jobs they propose. For example, let's reconsider the heuristic
rule mentioned in (mu) above. It really looks more like the following:

If very few erampies of X are found.
Then add the foUowng job to the agenda" "Ceneralze the concept X., for the

followine reason: "X's are quite rare; a slghtly less restrictive
concept might be more interesting".

If tho same job is proposed by several rules, then several different reasons for it may
be present. In addition, one ephemeral reason also exists: "Focus of attention" (9].
Ariy jobs which are relhted to the one last executed get "Focus of attention" as a
honus reason. AM uses all these reasons to decide how to rank th jobs on the
aenda. Each reason is given a rating (by the heuristic which proposed it), and the
ritings are combined into an overall priority rating for each job on the agenda. The
jnl,. are ordered by these ratings, so it is trivial to select the job with the highest
ratinp. Note that if a job already on the agenda is re-proposed for a new reason, then
tl-, priority will increase. If the job is re-proposed for an already-present reason,
however, the overall rating of the job will not increase. This turned out to be an
important enough phenomenon that it was presented in (13] as a necessary design
constraint.

AM uies each ;ob's list of reasons in other ways. Once a job has been selected, the
quiality of the rea-,ons is used tG decide how much time and space the job will be
permitted to absorb, before AM quits and moves on to a new job. Another use is to
ryplain to the human observer precisely why the chosen top job is a plausible thing
for AM to c6ncentrate upon, 0

3.4. Low-level Control: A Lattice of Heuristic Rules

The hundreds of concepts AM pcssesses are interrelated in many ways. One main
organi7ation is that provided by their Generalization and Specialization facets. The
concepts may be viewed as nodes on a large lattice whose edges are labelled
Geni/Spec. The importance of this organization stems from various heritability
properties. For example, Spec is transitive, so the specializations of Numbers include
not only Primes but all its specializations as well.

0

1 et us describe a second, very important heritability property. Each of the 250
heuristic rules is attached to the most general (or abstract) concept for which it is
deemed appropriate. The relevance of heuristic rules is assumed to be inherited by all
its specializations. For example, a heuristic method which is capable of inverting any
function will be attached to the concept "Function"; but it is certainly also capable of
inverting any permutation. If there are no known methods specific to the latter job,
then AM will follow the Gent links upward from Permutation to Bijection to Function...,
seeking methods for inversion. Of course the more general concepts' methods tend to
be weaker than those of the specific concepts.
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In other words, the Genl/Spec graph of concepts induces a graph structure upon the
set of heuristic rules. This permits potentially relevant rules to be located efficiently.
Here is one more example of how this heritability works in practice: Immediately after
the job "Fill in examples of Set-equality" is chosen, AM asks each generalization of
Sf't-equality for help. Thus it asks for ways to fill in examples of any Predicate, any
Activity, any Concept, and finally for ways to fill in examples of Anything. One such
heuristic rule known to the Activity concept says: "If eramples of the domain of the
actLvty f are already known, Then actu&lUy ezccute f on some random membcrs of its
de, nintn." Thus when AM applies this heuristic rule to fill in examples of Set-&quality,
it, Domain facet is inspected, and AM notes that Set-equality takes a pair of sets as its
arfgUments. Then AM accesses the Examples facet of the concept Set. where it finds a
large list of sets. The Ihs is thus satisfied, so the rule is fired. Obeying the heuristic
rule, AM repeatedly picks a pair of the known sets at random, and sees if they satisfy
Set-equality (by actually running the LISP function stored in the Algorithms facet of
Set-equality). While this will typically return False. it will occasionally locate -- by
random chance -- a pair of equal sets.

Other heuristics, tacked onto other generalizations of Set-equality, provide additional
method- for executing the job 'Till in examples of Set-equality." A heuristic stored on
the concept Any-concept says to symbolically instantiate the definition. After spending
much time manipulating the recursive definition of Set-equality, a few trivial examples
(like t)-()) are produced. Notice that (as expected) the more general the concept is,
the weaker (more time-consuming, less chance for success) its heuristics tend to be.
For this reason, AM consults each concept's rules in order of increasing generalization.

3.5. Behavior of this Rue System

Avs the oreceding, four sections indicate, the dynamic behavior of AM was as follows: a
job is chosen from the agenda. potentially relevant rules are located by their position
in the Genl/Spec lattice, their Is's (left-hand sides) are evaluated to find those which
actually trigger, they are then executed (in order of decreasing specificity) until they
are all executed (or until some loca/, self-imposed limit on time or space is exceeded),
and the cycle repeats. AM has a modest facility that prints out a description of these
activities as they occur. Here is a tiny excerpt of this self-trace monologue.

** Job 65: ** Fill in Examples of the concept ivisors-of".

3 Reasons: (1) No known examples of Divisors-of so far.
(2) TIMES, which is related to Divisors-of, is now very interesting.
(3) Focus of attention: AM recently defined Divisors-of.

26 examples found, in 9.2 seconds. e.g., Oivisors-of(6)- 1 2 3 6).
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aJob 66: as Consider numbers having small sets of Divisors-of.

2 Reasons: (1) Worthwhile to look for extreme cas.es.
(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with 0 divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have precisely 0 divisors.

Filling in ewamples of numbers with 1 divi-,ors.
I examples found, in 4.0 seconds. e.g., Divisors-of( I) - (1).
Conjecture: I is the only number with precisely I divisor.

Filling on examrples of numbers with 2 divisors.
24 eyamrples found, in 4.0 secords. eg., Divisors-of(13) - 11 13).
No obvious conjecture. May merit more study.
Creating a new concept: 'Numbers -with -2-divirsor s"

l- iMine in examples. of numbers with 3 divisors.
I I eiramples found, in 40 secondi; eeg, Divisors-of(49) - 11 7 491.
All numbers with :3 divisors are also Squares. Definitely merits more stu~dy.
Creating a new concept: 'Numbers -with -3 -divisors".

k-)Jo 67: ois Corsider the square-roots of Number s-with-3 -divisors.

2 Reasons: (I) rjumbers-with-3-clivisors are uneypectedly also Perfect Squares.
(2) Focus of attention: AM recently worked on Nos -with -3 -divisors.

All square -roots of N~umbers -with -3 -divisors seem to be Numbers -with-2 -divisors.
e.g Divisors -of(Square-root(1 69)) -Divisors-of(13) - 1 13).

Even the converse of this seems, empirically to be true.
i.e., the square of each No-with-2 -divisors seems, to be a No-with -3-divisors.
The chance of coincidence is below acceptable limits.

Boosting the interestingness rating o! each of the concepts involved.

aJob 68: ** Consider t he squares of Numbers -wit h-3 -divisors.

3 Reasons: (1) Squares of Numbers -with-2-divisor s were interesting.
(2) Square-roots of Numbers -with -3 -divisors were interesting.
(3) Focus of attention: AM recently worked on Nos-with-3-divisors.

Now that we've seen how AM works, and we've been ewpo,-ced to a bit of "local"
result!-, let's take a moment to discuss the totality of the mathemAtics which AM carried
out. AM began its investigations with scanty knowledge of a hundred elementary
concepts of finite set theory. Most of the obvious set-theoretic concepts and
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rvplationships were quickly found (e.g.. de Morgan',, laws; singletons), but no
-.ophi-Aicated set theory was ever dome (e.g., diagonalization). Rather, AM discovered
nAtioral numbers and went off evpforing elementAry number theory. Arithmetic
operations were soon found (as analog,, to set-the.orefic operations.), and AM made
s iirprising progre' s en divisibility theory. Prime pairs, Otophantone equations, the
unique factorization of numbers into primes, Goldbach's conjecture -- these were some
of tip nice discoveries by AM. Many concepts which we know to be crucial were never
uincovered, however: remainder I, gcd, greater-than, infinity, proof, etc.

All thr! discover tes m~entioned were made in a run lasting one cpu hour (lnterli'.p4 100k,
SijmFx PDP-10 KI). Two hundred jobs in toto were selected from the agenda and
fr'lf, ted. On the average. A job wa- granted 30 cpt s.econds, but actually used only
I~ -'- conds. For a typical job, about 35 rules were located a-, potentially relevant, and
about a dozen actually fired. AM began with 115 concepts and ended up with three
tinio- that many. Of the synthesized concepts, half were technically termed "losers"
(both by the author and by AM), and half the remaining ones were of only marginal
Irltpr est.

Altlhot;iti AM fared well according to several different nmeasures of performance (see

'Th-rtion 7.1 in [13]). of greatest significance are its limittions. This s0bsection will
mevrely report them, and the neyt section will analyze whether they were caused by
radical departures from the neo-clasocal produc tion -system architecture, or from

depArting not far enough from that early design.

A-. AM ran longer and longer, the concepts it defined were further and further from
the primitives it began with. Thus 'pfrme-pairs" were defined using "primes" and
a4ddition", the former of which was defined from "divisors-of", which in turn came from
*mullplicplion", which arose from 'addition". which was defined as a restriction of
union", which (finally!) was a primotive concept (with heuristics) that we had supplied

to AM initially. When AM subsequently needed help vi'th prime pairs, it was forced to
rely on rules of thumb supplied originally about aunoning. Although the heritability
property of heuristics did ensure that those rules were still valid, the trouble was that

they were too general, too weak to deal effectively with the specialized notions of
primes, and arithmetic. For in-'tance, one general rule indicated that AUG would be
intere-ting if it possessed properties absent both from A and from B. This translated
into the prime-pair case as 'If p-q-r. and p~q~r are portnies. Then r is interesting if it
tons properties not possessed by p or by q." The search for categories of such
interesting primes r was of course barren. It showed a fundcamental lack of
understanding about numbers, addition, odd/even-ness, and primes.

A'. the derived concepts moved further away from finite set theory, the efficacy of the
initial heuristics decreased. AM began to "thrash", appearing to lose most of its
h'euiristic guidance. It worked on concepts like "Prime triples", which is not a rational
thing to investigate. The key deficiency was the lack of adequate meta-rules[6]:
heuristics which cause the creation and modification of new heuristics.

1This concept. and many of the other 'omse,,ons . jo have been d,',cnvered by the existing heuristic rules in

AM The pathe which would have resulted in thaw delo.wton were sim~ply never rated high enough to explore
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A-.ide from the preceding major i-otation, most of the other problems pertain to
mi'.,,in knowledge. Many concepts one might consider basic to discovery in math are
at,.ent from AM; analogies were under-utilized; physical intuition was absent; the

interface to the user wa, far from ideal; etc.

4. Reexamining the Design

I ,,t t;-. now consider the major components of a RS's design and how AM treated them:
the OS, the rule,., the distribution of knowledge between OS and rules, and the rule
interpretation policy. For each component, AM's architecture failed to adhere strictly
to the pure RS guidelines. Were these departures worth the loss of simplicity? Were

the deviation- die to the task domain (scientific discovery), to the task view
(heuristic ally guided growth of structured theories), or to other sources? These are
the kind(s of question- we shall address in each of the following subsections.

4.1. Data Structures

We recornize that a -.ingle uniform DS (e.g., an infinite STM [19]) is universal in the

ruirir .ense of being forrniUy adequate: One can encode any representation in a
linear, homogeneous DS. The completeness of such a DS design not withstanding, we
believe that encouraging several distinct, special-purpose DSs will enhance the

performance of a di'.covery system. That is, we are willing to sacrifice aesthetic purity

of DSs for clarity, efffcpency, and power. In this ,ection we will explore this tradeoff.

The data structures used in AM are unlike the uniform memories ,uggested by the first

design constraint (see Figure 1). One DS -- the agenda -- holds an ordered list of
pl.iu.sihle question, for the system to concentrate on, a list of jobs to work on.
Another DS is the graph of concepts AM knows about. Each concept itself consists in
much structured information (see Figure 2). The reasons AM has for each job have
information associated with them. Still other information is present as values of
certain functions and gbobal variables: the cpu clock, the total number of concepts, the
IA," thing typed out to the user, the last few concepts worked on, etc. All these types

of information are accessed by the Ihs's (left hand sides) of heuristic rules, and
affected by rhs's (some "deliberately" in the text of the rule, some *incidentally"
through a chain of if-added methods).

Why is there this multitude of diverse DSs? Each type of knowledge (obs, math

knowledge, ryslem status) needs to be treated quite differently. Since the primitive
operation, will vary with the type of information, so should the DS. For jobs, the
primitive kinds of accesses will be: picking the highest-rated job, deleting the lowest-
rated one, reordering some jobs, merging new ones. A natural choice to make these

operations efficient is to keep the system's goals in a queue ordered by their rating or

partially-ordered by those ratings that are commensurable. For resource information
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the iuual request is for some statftLc of some cla,.s of primary data. To maintain a
lale of such summary facts (like how much the CPLJ clock has run so far, or how many
concepts there are) is to introduce an unnecessary DS and incur exorbitant costs to
rainlain many short-lued entries that will, most probably, never be used. It is far
more reasonable to run a sumimarizing procedure to develop just that ephemeral, up-
to oate information that you need. For math concepts, we have a much less volatile
.ituation. We view them as an ever-growing body of highly-interrelated facts.

Knowledge in this form is stable and rarely deleted. When new knowledge is added, a
,reat many "routine" inferences must be drawn. In a uniform, linear memory, each

would have to be drawn explicitly; in a structured one (as the Genl/Spec graph
d.ructure provides) they may be accomplished through the tacit (analogical)
characteristics of the representation, simply by deciding where to place the
information.

Farh kind of knowledge dictates a set of appropriate kinds of primitive operations to
he performed on it, which in turn suggest natural data structures in which to realize it.
The generality of this perspective on rule-based systems is made more plausible by
r-xamining other RSs which deal with many types of knowledge (e.g., [51). If this is so,
if the de!.ign proceed-. from "knowledge to be represented" to "a data structure to
hold it", then fixing a prior& the capabilities of the DS access primitives available to
rule,% is stspect.

Thirefore, we advocate the oppof.t-: the PS de-igner is encouraged to name every
cnmhnation of "machine" operations that together comprise a single conceptual access
of dAta hy rules. In AM. it is quite rea-.onable to expect that a request like "find all
g'vneralizations of a given concept" would be s.uch a primitive (iC., could be referred 'o
Ivy name). Even though it might cAue the 'machine" (in this case, LISP) to run around
the G nl/Spec graph, a single rule can treat this a-, merely an 'arcess " operation, The
ti' p of complex tests and actions is not new; we ,imply claim that it is always
pirferable to package knowledge (for which a reasonably fast algorithm is available)
,v a single action (though it may have side-effects in the space of concepts) or a
,ingle test (so long as its sole side-effect -- modulo caches -- is to signal). Primitive
tet', and actions should be maximally algorithmic, not minimally computational.

The neo-classical view of designing a production rule system was that of defining a
machine. Our present view is that RSs do not compute so much as they guide attention.
In adopting this view (thereby separating the controller from the effector), we
recognize that we are giving up an attractive feature of pure rule systems: a
homogeneous basis for definition. For example, the rule system designer must now
,-.poIl out in detail the definitions of the DS accessing functions; but the designer of a
wo-clas:.ical RS is simply able to take as givens the mitlching and in,.oerling oporations

Cas .pecified in neo-classical principle *6, Figure 1). and he builds each more
complicated one out of these primitives2 . In giving up the old view of the RS as an
.jhtlract computing machine, the RS designer must use another homogeneous substrate

reiher by 9 fringing out a sequence of primitves on on. side of a ruis. or by handcrafiing a lightly coupled
bundle of rules (so firing such a role would smulate traversing one link of the kind that abound in AM. DSa)
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(e.- , LISP) in terms of which to define his DSs and es.pecially the procedure- that
process them. In exchange, he obtains a clear distinction between two kinds of
knowledge contained in the neo-classical rule: plausible proposals for what to do next,

and how to accomplish what might be proposed.

We have seen that admitting complicated and varied DS. leads, to stylized sets of DS
a'ce- 'es. The DSs and their sets of read/write primitives must in turn be explicitly
defined (coded) by :he designer. This seems like a high price to pay. Is there any
l)rit:ht -ide to this? Yes, one rather interesting possibolity is opened up. Not only the
PS designer, but the RS itself may define DSs and DS access functions. In AM. this,

rniht take the form of dynamically defining new kinds of facets (slots). E.g., after
"inlective Function" is defined, and after some properties of it have been discovered, it
wo ild he appropriate to introduce a new facet called "inverse" for each (concept
representing an) injective function In AM, the actual definitions of the facetk of every
(onrept are complex enough (shared structure), inter-related enough (shared meaning),
and interesting enough (consistent heuristic worth) that a special concept was included
for each one (e.g., a concept called 'Examples") which contained a definition,
dr-.rition,... of the facet. Thus the same techniques for manipullating and di-.co%,erinf,
inhli concepts may be applied to DS design concepts. rot only do math theories
rmnerfe, so can new DS access functions (new slots.; Pg., "Small Boundary Examples",
"I a( torization", or 'Inverse").

It .hould be noted that in opting for non-uniform DSs, we have not in general
arrificed efficiency. One has only to compare the time to access a node in a tree,

,er'.ts in a linear list, to appreciate that efficiency may, in fact, be increased by non-
un iformity.

.Jl.t how tangled up a DS should we tolerate' Should memory elements be permitted
to refer to 'to "know atout") each other? We believe the answer to depend upon the

type of data structure involved. For the homogeneous DS called for in the neo-classical
dl,,.i'n* much simplicity is preserved by forbidding this kind of interrelationship. But
con.ider a DS like AV% graph of concepts. It is growing, analogically interrelated, and
it contains descriptions of its elements. This richness (and sheer quantity) of
information can be coded only inefficiently in a uniform, non-self-referential manner.
For another example, consider AL's agenda of jobs. One reason for a job may simply
be the existence of some other job. In such a case, it seems natural for part of one
entry on the agenda (a reason part of one job) to point to another entry in the same

DS (point to another specific lob .- 1 the agenda). Thus, inter-element pointers are
allowed, even though they blur a "pare" distinction between a DS and its entries.:
Inter-element references play a necessary role in organizing large bodies of highly
interrelated information into structured modules.

There is yet another motivation for special-purpose DSs when the task of the RS
includes sensing an external environment. Using a uniform memory, external stimuli
are dumped into the working memory and rub shoulders with all the other data. They

3 In sec lion 4 3 we will menfie work thal blhw thee deiricticn even fur her
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mo.t then be distinguished from the others. (Must" because to freely intermingle
what one sees or is told with what one thinks or remembers is to give way to endless.
conffusion.) How much cleaner, less distracting, and safer it is for stimuli to arive in
their own special place -- a place which might well be a special purpo,e store such as
an intensity array (not even a list structure at all), or a low-level speech-segment
qeica e. A linear memory (e.g., an infinite STM) is of coutrse adequate; one could tat,

,-.vch incoming environmental stimulus with a special flag. But the design philosophy
we are proposing is aived at maximizing clarity and efficiency, not uniformity or
oni,,er f ality.

We know that this view of DSs means making a specialized design effort for each class

of knowledge incorporated into the PS. But that is desirable, as it buys us three

thing-.: 10' system performance is increased, (it) some forms of automatic learning are

facilitated, (wL) knowledge is easier to encode.

4.2. Rules

In the "pure" view of PSs, the rule tore is not a full-fledged OS of the PS. For

evaample, in Waterman's [24] poker player, rules may not be deleted. Rychener (22]

-tates. that the only way his PS may insprct rules is by examining the effect of those

rLiles which have recently fired. Although AM had no ewplcil taboo against inspectin,

|il.s ,.tich analyse-w were in practice never po.,sible. soce the rile, were ad hoc

blocks of LISP code. This eventually turned out to he the main limitalion of the design

nf AM The ultimate impediment to further discovery was, the lark of rules wh uh could

rea'.on about, modify, delete, and synthesize other rules. AM direly needed to

S.(tthesize specialized form% of the given general heuristic rule% (a-, new concepts
.jrOsp; see the end of 3.5.)

We want our heuristic rules to be added, kept track of, rea,.oned about, modified.

dh-Ieted, generalized, specialized, ... whenever there is a good reason to do -o. Note

thAt those situations may be very different from th ones in which such a rule might

fire. E.C., upon discovering a new, interesting conrept, AM rhould try to create some

!.pecially-tailored heuristic rules for it. They wouldn't actually fire until much later,
when their lhs's were triggered. After having con-rAtrled such ruler, AM might

' uhPct them to criticism and improvement as it explore- the new concept.

In sum, we have found that the discovery of heuristic rules for using new math

concepts is a necessary part of the growth of math knowledge. Hence, following the

ar ument in 4.1, the rules themselves should be DSs and each rule might be described
by a concept with effective (executable) and non-effective (purely descriptive) facets.
This lesson was made all the more painful because it was not new [5] Apparently the
need for reasoning about rules is common to many task.

Tho, current re-coding of AM does in fact have each rule repre-ented as a concept.
What kinds of non-effective "facets" do they have? R(call that one of the features of
the original AM (as described in Section 3.3) was that with each rule were associated
some symbolic reasons which it could provide whenever it proposed a new job for the
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arenda. So one kind of facet which every rule can po,.-, ,rs is "Reasons". What others
are there' Some of them describe the rule (e.g., its ave'.'ge cost); some facets provide
a road map to the space of rules (e.g., which rule schemal a are mere specializations of
the given one), some facets record its derivation (e.g., the rule was proposed as an
analog to rule X because ...), its redundancy (some other rules need not be tried if this
one is), etc.

There are some far-reaching consequences of the nerd to reas on about rules just as if
they were any other concepts known to AM. When one piece of knowledge relates to
- everal rules, then one general concept, a rule schema, hiould exist to hold that
common knowledge. Since each rule is a concept, there will be a natural urge to
exploit the same Genl/Spec organization that proved !.o us eful before. Heritability still
hold,; e.g., any reason which explains rule P is also .orvehow a partial ewplanation of
each specialization of R.

Pitle schemata have cause to evist simply because they teneralize -- and hold much
information which would otherwise have to be dtiphlcalrd in -- .everal specific rules.
They may tend to be "bid" and les, diro'ctlv prntrto -s when eyeri ed. yet they are of
voahie in capturing the essence of the# discover, teeniqlin is 4 We put "big" in quotes
hfcaute sheer length (total number of Ihs tests allowed, total numhr of rh-, actions) is
not directly what we're talking about here. A general rijle schema will capture many
ro'.ularities, will express an idea common to several more specific rules. It will contain
diual forms of the same rule, sophisticated types of variable-binding (for the duration
of the rule application), and searching may even be required to find the action- of such
a general rule. We may even wish to consider e.ery rile in the RS a , a rule schema of
.nime level of generality, and much processing m ny p.o on to find the particular
in,.tance(s) of it which should he applied in any partictilar 'ituaion.

I et u- consider a rule schema called the 'rule of enthuii|asm. It subsumes several
rules in the original AM system (pp. 247-8 of (13)), e.g.. those that said:

If concept G is now very interesting. and G was created na a genrr4z4tson

of some fenrer concept C.
Cie ortra consideration to generalizing G. and re generalizing C in other

ways.

and:

If concept S proved to be a dead-end, and S was created as a specialization
of some eier concepe C.

Give less consideration to spe iaUg S. and to specializing C in other sways
in the future.

4 In AM, even the iecitfic usg my be '%q' in Ihe eie that the very precise knowledge may involve much
tett to triter ar, once trigg.el.d may ceitesudo a.. ebrete resulto

L.
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The proposed rule .tchema is:

If concept X has Iery hilr/1low interest and X can be derived from some
concept C by means m,

0Ge more/less consideration to finding (and elaborating) concepts derived
from C. X (and their "neighbors') by means analoRous to 0.

There are four variables to be matched and coordinated in the Ihs of this rule: a
concept X, the direction (high or low) of its extreme interest rating, a derivation
procedure m and an associated source concept C. The action itself is to search for
job-. of a certain type and give them a corresponding (high or low) rating change.
Three types of matching ate present: (a) ranging over a set of alternatives which are
known at the time the rule is written (e.g., the "high/low" alternative); (it) ranging over
a -,et of alternatives which can be access-e easily at any moment the rule is run, like
the 'et of concepts and connections between them now in existence (e.g., the variable,;
X and C range over this kind of set); fis) ranging Over a set of alternatives which must
he heuristically searched for as part of the rule execution (e.g., "analogous" and
"neighbors" only make sense after a nontnvial amount of searching has been
performed).

Sir-ce the "rule of enthusiasm" is very general, it will only be tried if no more specific
rules (such as the two which were listed just above it) are relevant at the time.
Ideally, the search to specify the action should create a new, specialized form of the
rule of enthusiasm to catch this situation and handle it quickly, should it arise again.
Note that versions, of this schema that mention generalization or specialization are also
s chemata (without any specification search% they are simply less general schemata
than the rule of enthjsasm itself. Whenever a new subject for discovery gets defined,
the abstract, hard-to-execute rule schemata can be specialized (compiled, refined
etc.) into efficient heuristics for that subject.

Another use of a rule schema might be to name a collection of neo-classical rules that
are coupled by together fulfilling a single function. Consider a collection of rules
which is tightly coupled, say to perform an iteration. Much knowledge about the
iteration loop as a whole may exist. Where is such descriptive information to be stored
and sought? Either it must be duplkated for each of the coupled rules, or there must
be a rule-like concept which "knows about" the iteration as one coherent unit. We
conchlde that even if some intertwined rules are kept separate, an extra rule (a
schema) should exist which (at least impibcilly) has a rhs which combines them (by
containing knowledge common to all of them). Thus rule schemata do more than just
unify general properties of rules: there must also be schemata of the kind that relate
fun lion to mechanism.

Another problem crops up if we consider what happens if one of the coupled rules is
modified. Often, some corresponding change should be made in all its companions. For
example, if a term is generalized (replacement of "prime" by "number" everywhere)
then the same substitution had probably better be done in each rule with which this
one is supposed to couple. What we are saying is that, for RSs which modify their
own rules, it can be dangerous to split up a single conceptual process into a bunch of
rules which interact in more or less fixed ways when run, without continuing to reason
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ahout them as an integrity, Lake ardy other algorothrn composed of parts. Here again,
we find pressure to treat RSs as algorithms, not vice-versa.

Finally, let us make a few irresistable observations. The whole notion of coupling via
meaningless tokens is aesthetically repugnant and quite contrary to "pure" production
.y"tem spirit. By "meaningless" we mean entries in DS that provide a narrow hand-
crafted channel of communication between two specific rules that therefore "know
about each other".5 At the least, when a coupled rule deposits some "intermediate-
-.tate" message in a DS, one would like that message to be meaningful to many rules in
the system, to have some significance itself. We can see that entries in a DS have an
expected meaning to the read access functions that examine the OS. 6 If this purity is
maintained, then any apparent "coupling" would be merely superficial: each rule could
!,tAnd alone as a whole doriain-.dependent heuristic. Thus no harm should come from
changing a c-ingle rule, and more rules could be added that act on the "intermediate
me-,sage" of the coupling. Such meaningful, dynamic couplings should be encouraged.
Only the meaningless, tight couplings are being criticized here.

4.3. Distribution of Knowledge Between Rules and DS

A common "pure" idea is that all knowledge of substance ought to be represented as
rtile;. Independent of such rules, the DS forms no meaningful whole initially, nor has it
any final interpretation. The "answer" which the RS computes is not stored in the DS;
rather, the answer consists in the process of rule firings.7 The DS is "just" an
intermediate vehicle of control information.

Contrary to this, we say that rules ought to have a synibotic relationship to DSs. The
DSs hold meaningful domain-dependent information, and rules process knowledge
rrpresented in them. For RSs designed to perform scientific research, the DSs contain
the theory, and the rules contain methods of theory formation.

Hlut much domain-dependent knowledge is conditional. E.g., "If n and m are relatively
prime and divide x, then so must nm". Shouldn't such If/Then information be encoded
a, rules? We answer an emphatic No. Just as there is a distribution of "all knowledge
of substance" between rules and DSs, so too must the conditional information be
partitioned between them. We shall illustrate two particular issues: (i) Much
information can be stored implicitly in OSs; (i) Some conditional knowledge is
inappropriate to store as rules.

5 By contrast, a "meaningful" OS entry will embody a piece of information which is specific to the RS's took, not
to the actual rules themselves

f Perhaps this "meaning" could even be expressed formally as an inveriant which the write access functions for

the DS must never violets

I The sequence of actions in time In addition, perhaps, the "answer" may involve a few of their side-effects
E S. (Respond 'YES')
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When designing a DS, it is possible to provide mnechani,.ms for holding a vast amount of
itiformation snplicitly. In AM, e.g., the organization of concepts into a Gent/Spec:
hierarchy (plus the assumed heritability properties; see 3.4) permits a rule to ask for
..alt concepts more general than Primes" as if that were a piece of data explicitly
s.tored in a DS. In fact, only direct generalizations are stored ("The immediate
g'enerali7ation of Primes is Numbers'). and a 'rippling" mechanism automatically runs up
the Gent links to assemble a complete answer. Thus the number of specific answers the
DS can provide is far greater than the number of individual items in the DS. True,
these DS mechanisms wi!l use up eytra time in processing to obtain the answer; this is
rfficient since any particular request is very unlikely to be made. Just as each rule
knows. about a general situation, of which it will only see a few instances, that same
qtiAlity (of wide potential applicability) is jus.t as valuable for knowledge in OSs. These
aire situations where, like Dijkstra's multiplier [8]. the mechanism must provide any of
the consequences of its knowledge quickly on demand, but in its lifetime will only be
.e'ked a few of them.

rkiw that we have seen how tacit information carn be encrided into DSs. let us see some
fAl~fr's where it shouild be - - ic . where it is not Appoprfate to encode it as rules of
the -.vstIem. Many things eget c,,llod onsplicaton, and only some of them cbrrespond to
rule A~pplication. For finstIanc-.c there is logical entaetmt-nt (egit AAB then A), physical

sustvation (e.g., of it rains. then the ground will get wet), probable as.sociations (e.g., if it
v'. wet underfoot, then it has probably been raining.) These all describe the way the
wot Id is, not the way the perceiver of the world behaves. Contrast them with
knowledr'e of the form 'if it is ratnwng, then open the umbrella". We claim that this last
kind of situation -action relationship should be encoded as, ru!cs for the PS, but that the
other types. of implication should he stored declaratively within the DS. Let's try to
Itii.tify this distinction

The sit uation -action rules indicate imperatively how to hehave in the world; the other
types of implication merely indicate eypected relationships and tendencies within the
world. The rules of a RS are meant to indicate potential procedlural action', which are
ot'eyed by the system, while the DS,, indicate the way the world (the RSs environment)
behaves in terms of some model of it. The essential thing, to consider is what relations
ate to be CdUsed in time. these are the thengs we should cast as rules. The lhs of a
rule measures some aspect of knowledge presently in DSs, while the rhs of the rule
defin". the attention of the systemn (regarded as a processor feeding offI of the DS) in
the immediate future.

Tis is the heart of why rule-sets are algorithms. They are algoirithms for guiding the
application of other (DS processing) algorithms. It also explains why other kinds of
implications are unsuitable to be rules. Consider causal implication ("Raining -- > Wet*).
White the lhs could be a rule's lhs (it measures an aspect of any situation), the rhs
'-ticuld not be a rule's rhs (it does not indicate an appropriate action for the system to
ta ke).

sin a RS that apires to any generality at al, an antecedent theorem of the form 'if (you know that) it is rainie,
thipri [assert lhatj it is wet* is not the appr~opiate form to sic'. this knowledge. it is too compiled a form.
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Most purist prodiiction systems, have, (often implicitly') a rule of the form "If the left
-ict of an implication is true in the dlalahas.e, Then assert the right side". This is only
one kind of rule, of course, capable of dealing with implications. For example, L4YCIN
and LT (1 7) (implicitly) follow a very different rule: "if the rhs of an implication will
-atisfy my goal, Then the lhs of the implication is now flite new goal". Other rules are
poss-ible; many rules for reaoning may feed off the !same "table" of world knowledge.
The point is that the implications themselves are declarative knowvledge, not rulet. In
summary, then, it may be very important to distinguish rules (attention guides) from
mere implications (access guides), and to store the latter within the DlSs. This policy
was not motivated by the scientific inference task for our PS. We believe it to be a
worthwhile guideline in the design of any PS,

4.4. Interpreter

After a rule fires, the neo-classicat interpretation policy (09 in Figure 1) demand-, that
nny ruile in the systemn can potentially lie the newt one selected to fire. This is true
regardles . of the speed-up techniquies, tv'ed in any particular implementation (say, by
preprocessing the ifis's into a ciscri-nination net (2?]). But cons ider RS-, for -scientific
dis.covery tasks. Their task - - both at the top level and frequently at lower levels -- is
qtoite open-ended. If twenty rules trigger a-. relevant to such an open-ended activity
(c p,.. gathering empirical data, inducing conlecltare', et(.) then there is much motivation
for continuing to #swecute just these twenty rule-, for a while. They form an ad hoc
plausible search algorithm for the agendfa itemn selected

A RS for discovery might reasonably be given a complex interpreter (rule-firing
policy). AM. for example, eyperimented with a two-pass interpreter: first, a best-first,
aenda-driven resource allocator and attention focusser select-. the job it finds most

interesting; second, it locates the set of relevant rules (typically about 30 to 40 rules)
for the job, and begins executing them one after another (in best-first order of
-.prcificity) until the resources allocated in the first step run ot (20). The overall
rating of the job which these rules are to satisfy determines the amount of cpu time
and list cells that may be used up before the rules are interrupted and job is
abandoned.

For example, say the job were "Find examples of Primes". Its allotted 35 cpu seconds
and 300 list cells, due to its overall priority rating just before it was plucked from the
agendla. Say, 24 rules are relevant. The first one cliickly finds, that "2" and "3" are
primes. Should the job halt right then? No, not if the real reason for this job is to
Father as much data as possible, data from which conjectures will be suggested and
tested. In that case, many of the other 23 rules should be fired as well. They will
produce not only additunaL ewamples, but perhaps other types of examples.

stanidins alone If "told (or Swva) a rul lih l. a learning eyelvim Phould 'pateg. it as a fomils, kind of
dodtec lion file the i...du of now informaetion away as a conjectured lendlenty of wetness to follow rain, and
start checking for euceplione A sopiefw~ale (ed luchy) diecovery RS Pitu thereby develop the conucept of
Shelter,
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The' job-. on AM's agendla are really just mnint-re'earrh questilons which are plausible to
'.pendc time investigating. Although phrased as ,pecifi( requeste , each one is really a
rcscarch proposal. a topic to concentrate upon. We fouind it necessary to deviate from
the s implest uniform interpreter for clarity (e.g., a human can follow the first-pass (job
'.Mcfrion) taken alone and can follow the sccond-par.s (job execution) by itself), for
efficiency (knowing that all 24 rules are relevant, there is no need to find them 35
time's), and for power (applying qualitatively different kinds of rules yields various
type-. of examples). We claim this quality of open-endledness will recur in any RS
who',e task is free concept exploration. This includes all scientific discovery but not all
f.rtentific inference.

5. Speculations for a New Discovery System

ti' '.pfrit of this paper has teen '0 give up str aightfor ward -simplicity in RSs for
clairity, efficiency, and power. Several examples have been cited, bit we speculate that
tlif-re are further tradleoffs of this kind which ate applicable to RS,, whose purpose is
In make new discovler.,e.

Often, there are several possible ways the desiprer may view the task of (and
'.iihta-ks of) the intended PS. We wi! h to add the notion of "proof" to AM, say. Should
we represent proof a-, a resolution .earch, as a procorss, of criticism and improvement

I I I spiralling toward a tolulion. as a natur.Al deduction cascade, ... Although any one
nf there tAsk-views. migiht Fperformn reeper tabtl', we ad 'oc ate the incorporation of all of
themn, despite the concormmitant cost, ot added proce-ug tirre, spa(e, and interfacing.
In fact, we wish never to exclude the possibility of the rystem acquiring another task-
VJiePw.

We took for the development of further discovery tools in the form of domain-
independent meta-heuristics that synthesize heuristic rule-, and in the form of abstract
hr'uiristic schemnata that specialize into efficient rule-. for each newly -discovered
domain. These discovery toots are all part of "getting familiar" with shallowly
tinderstood concepts, -such as syntheisized ones tend to be initially. It may even be
that symbolic analogy techniques exist. cutting across the traditional boundaries of
knowledge domains.

We contemplate a system that keeps track of (and has methods with which it attempts
to improve) the design of its, own OSs, its own control structure, and perhaps even its
own design constraints. Although working in (a collection of) specific domains, this
would be a general symbol system discoverer, capable of picking up and exploring
formulations, testing them and improving them.

5.1. A New Set of Design Constraints

Blelow are 13 principles for designing a PS whose task is that of scientific theory
formation. They are the result of reconsidering the original principles, (Figure 1) in the
lig~ht shed by work on AM. Most of the "pure" principles we mentioned in Figure I are
'JiatWed, and a few new ones have emerged,



nesign of Rule Systems for Dscovery p. 21

FIGIP[ 3: Scientific Discovery RS Architecture

I. Principlc of Several Appropriate Afernories. For each type of knowledge
which moist be dealt with in its own way, a separate DS should be
maintained. The precise nature of each OS shotuld be chosen so as to
facilitate the access (read/write) operations which will be most commonly
requested of it.

2 Principle of Marimal DS Accesses. The set of primitive DS access operations
(i.e., the read tests which a rule's lhs may perform, and the write actions
whLch a rhi may call for) are chosen to include the largest packages (clusters.
chunks....) of activity which are commonly needed and which can be
performed efficiently on the DS.

3. Principle of Facetted DS Flements. For ever-growing data structures, there is

much to be yarned and little lost by permitting parts of one DS item to point
to other DS items. In particular, schematic techniques of representing content
by structure are now possible.

4. Principle of Rules as Data. The iew which the RS designer takes of the
system's task may require that some rules be capable of reasoning about the
rules in the RS (adding new ones. deleting old ones. keeping track of rules'
performance, modifying erusting rules....). Some of the methods the RS uses to
deal with scientific knowledge may be applicable to dealing with rules as
well. In stch cases, the system's rules may thus be naturally represented as
new entries in the eristing DS which holds the scientific theory.

5. Principle of Regularities Among Rules. Each rule Is actually a rule schema.
SophLsticated processing may be needed both to determine which instance(s)
are reaevant and to find the precise sequence of actions to be erecuted. Such
schemata are often quite elaborate.

6. Principle of Avotding Meantnglessly-Coupled Rules. Passing special-purpose
loop control notes back and forth is contrary to both the spirit of pure RSs
and to efficiency. If rules are to behave as coupled, the least we demand is
that the notes they write and read for each other be meaningful entries in DS
(any other rule may interpret the same note. and other rules might have
written one identical to it).

7. Principle of Controlled Environment. For many tasks, it is detrimental to
per iit external stimuli (front an environment) to enter any DS at random.
At the least, the RS should be able to distinguish these alien inputs from

internaly-generated DS entries.

8. PrittcIple of Tacit Knowledge. In designing the DS, much knowledge may be
stored impliritly; e.g., by where facts are placed in a hierarchical network.
The DS should be designed so as to mazirnile this kind of concentrated.
analogical information storage. Hence. hard-working access functions are
needed to encode and decode the full meaning of DSs.
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9. Principle of Named Algorithms. When basic. "how to" knowledge ts atlatlable,
it should be packaged as an operation and used as a part of the lhs or rhs of
various rules. Enbodying this chunk of knowledge as several coupled rules is
not recommended. for we will want to mantpulate and utilize this knowledge
as a whole.

10. Principle of Rules as Attention Guide. Knowledge should be encoded as rides
when it is intended to serve as a guide of the systcnm's attention; to direct its
behavior. Other kinds of information, even if stated en conditional form,
should be relegated to 0Ss ,either erplhcitly as entries, or implicitly as special
access functions).

i 1. Principle of Inertial Intepreter. In tasks like scientific research, where
relevant rules wel be performing inherently open-ended activities (c.g., data-
gathering). such rules should be aUo,,ed to continue for a while even aftcr
they have nominally carried out the activity (e.g.. gathered one piece of
data). In such cases, the occasional wasted time and space Ls more than
compensated for by the fiequent acquisition of valuable knowledge that was
concentrated in the later riles. for scientific discovery, no single rule
(however "appropriate) should be taken as sufficient: a single ride must
necessarily view the task in jtst one particudar way. All views of the task
have something to contribute; hence variety depends otn a policy of aluays
applying several rule,.

12. Principle of Opennes. A discovery ride system can be enriched by
incorporating into its desiRn .everaxl independent virevus of the kno, ledge it
handles. Never assurme everything i; knowt about a i-lass of knowledge. All
appropriate formulations of a knowiledge class have something to contribute;
hence variety depends on openness to new formulations.

13. Principle of Support of D&Tc ve, y by Design. Py reprrenting its owln design
erplicitly (sa . as concelrs 1. the RS couild sttdv and etmprove those oonccpts.

thereby improving itself. This includes the DiS detgn q, the access function
algorithms, how to couple them, the function of vartous rides. the
interpretation policy of the RS. etc. This suggests that the study of designs
of computational mechanusms may be a worthy area for a discovery system
to pursue, whether its own design is available !o it or not.

Rule systems whose designs adhere to these guidelines will he large, elaborate, and
non-classical. We have mentioned throughout the paper several new complications
which the principles introduce. Trying to produce such a RS for a task for which a

q . the facOl spoitftciune If the ,nrt/output rNquorement, chnte with timo. so should the rule eystom's
dals tructuces
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pure, neo-classical production rule system was appropriate will probably result in
(li':a'.ter. Nevertheless, empirical evidence suggests that RSs having this architccttire
jiee, qieitQ nAtur~l -- And relitively tracdable Io con'truct -- for opon-onded fillkii likit
s.cientific discovery.
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